

OCFセミナー2024 2024.11.26

MTCのBIM/CIMソリューション 2024

~ 3次元設計モデルを取り入れた線形計画(道路編)~

OPEN FORUM

MTCの3次元モデル対応ソフト一覧(道路)

現況高さ編集ソフト 「APS-ZE」

3D地形モデル読み込み・作成・編集 航空写真張り付け

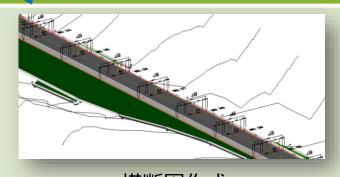
ランプ検討システム 「OP-RAMP」

ランプ計算 (ノーズ計算、引き出し勾配計算)

道路・鉄道線形計画システム 「APS-MarkIV」

線形検討、計算書出力、図面作成 統合モデル作成 、

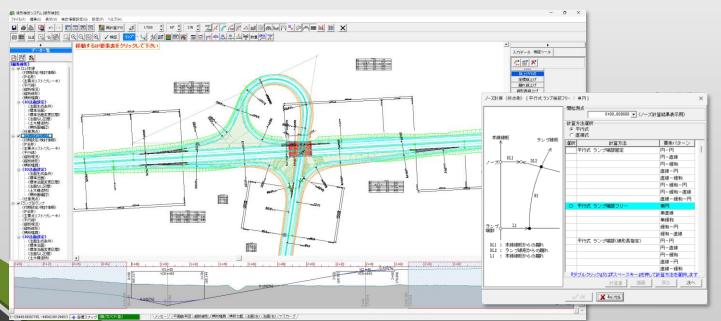
走行シミュレータ 「OP-ROAD」

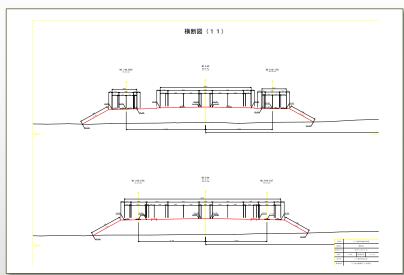

走行確認 視距確認、標識確認

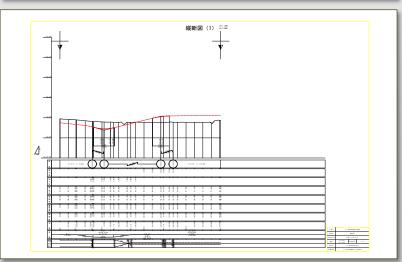
交差点設計図化システム 「APS-C」

交差点設計 ラウンドアバウト設計

道路横断図システム 「APS-ODAN」

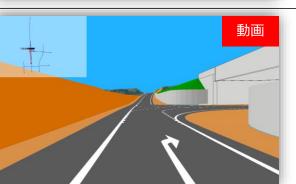

横断図作成 J-LandXMLエクスポート




インターチェンジの設計 (2D)

APS-MarkIV、OP-RAMP、OP-SECT、OP-PROF

- 図面でしか確認できないと・・・
 - ⇒ インターチェンジは複雑なため図面だけでは分かりにくい
- 全体イメージが分からない・・・
 - ⇒ 受発注者間での意思疎通が図りにくい
 - ⇒ 線形同士のすり付け部、交差部の高低差の確認が難しい
- 視認性を確認したいが・・・
 - ⇒ 全体のバランス、走行性は確認できない


インターチェンジの設計(3D)

APS-MarkIV、OP-RAMP、OP-ROAD、APS-C、APS-ZE

- 3次元モデルを設計段階に取り入れると・・・
- 全体イメージがつかめる
 - ⇒ 受発注者間での意思疎通が図れるようになる
- 図面だけでは確認が難しい
 - ⇒ 線形同士のすり付け部、交差部の高低差が一目で 分かるため間違いに気づきやすい
- ランプ線形の視認性の確認
 - ⇒ 走行の安全性が確保できる

ラ 型

メリット

1.料金所の集約: 出入口を一箇所にまとめることができるため、料金所を一箇所に集約でき、料金徴 収コストを削減できます

2.建設コストの削減: 橋梁または函渠により本線とランプが立体交差するため、交差構造物を一箇所 にまとめることができ、建設コストを抑えられます

3.シンプルな構造: ループが一つだけのシンプルな構造で、設計が比較的簡単です

デメリット

1.敷地面積の必要性: トランペット構造の分の敷地面積が必要となり、大型化しやすい 2.交通の流れの制約: ループ部分での速度低下や、合流・分岐の際の交通の流れに制約が生じること があります

このように、トランペット型ICはコスト面や構造のシンプルさで優れていますが、敷地面積や交 通の流れに関する課題がある。

メリット

1.コンパクトな設計: 平面Y型は比較的コンパクトに設計できるため、用地面積を抑えることができま

2.コスト削減: 構造物の設置や土量を抑えることができるため、建設コストを削減できます 3.シンプルな交通流: 交通の流れがシンプルで、運転者にとってわかりやすい構造です

デメリット

1.交通容量の制限: 平面交差が含まれるため、交通量が多い場合には渋滞が発生しやすくなります 2.安全性の課題: 平面交差部分での事故リスクが高まる可能性があります

このように、平面Y型ICはコスト面や用地面積でのメリットがある一方で、交通容量や安全性に課 題がある。

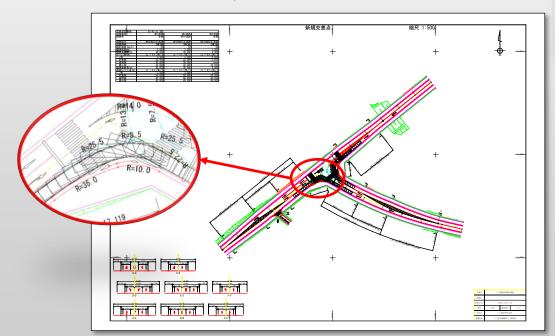
<APS-ZE追加機能> LAS/LAZ読み込みに対応 クラス分類 に対応


走行確認

APS-MarkIV、OP-ROAD、APS-ZE

- 走行の安全性を確保
 - ⇒ 平面線形と縦断線形との調和の確認
 - ⇒視距確認
- 動画による走行確認
 - ⇒ 2画面同時走行に対応
- 視距拡幅の「あり」・「なし」を動画で確認

※ 点群データの出典:静岡県ふじのくにオープンデータカタログ このデータはクリエイティブ・コモンズ 表示 4.0 国際 ライセンスの下に提供されています。(https://creativecommons.org/licenses/by/4.0/deed.ja)


<APS-C追加機能> 停止線旋回 (軌跡図) 巻き込み円の2心円設定

交差点設計

APS-MarkIV、OP-ROAD、APS-C、APS-ZE

- 交差点を検討しながら図面作成ができる
 - 軌跡図による巻き込み円、停止線位置などの検討
- 設計した交差点を3次元モデル表示
 - 全体イメージの共有、走行性・視認性の確認
 - 交差道路の高低差・サグ点の確認

このデータはクリエイティブ・コモンズ 表示 4.0 国際 ライセンスの下に提供されています。(https://creativecommons.org/licenses/by/4.0/deed.ja)

<APS-ODAN追加機能> 土工数量出力対応

J-LandXML

APS-MarkIV、APS-ODAN

J-LandXMLの作成には、道路横断図システム「APS-ODAN」が便利です。

出力されたJ-LandXML

横断図を作成する位置	説明	測点の自動生成
管理断面	20m間隔の測点位置	対応
平面線形の変化点	主要点	対応
縦断線形の変化点	縦断変化点	対応
道路の幅員の変化点	車線の増減による道路幅員の変化点等	対応
横断勾配の変化点	片勾配すりつけの始点、終点等	対応
法面形状	切土と盛土の境界、構造物との接合部	対応(※1)
曲線区間	曲線区間における円弧の半径に対して、 必要となる近似線の精度	対応

出力イメージ

※1 構造物の接合部の測点は入力です

ご清聴ありがとうございました。

製品に関するお問い合わせは

⊠ sale@mtc-aps.co.jp

https://www.mtc.aps.co.jp