
設計・施工のCIMリクワイヤメント対応システムのご紹介

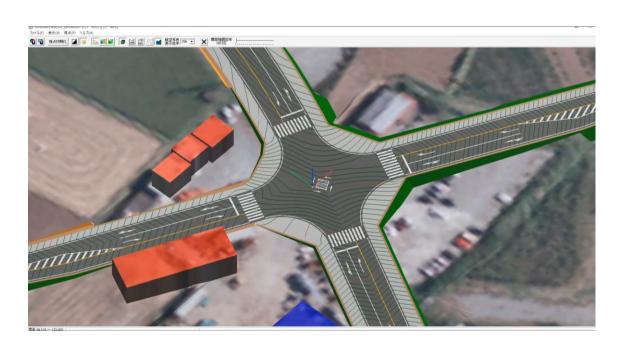
道路設計者のためのBIM/CIMソリューション

株式会社エムティシー 営業部 鶴木 裕一

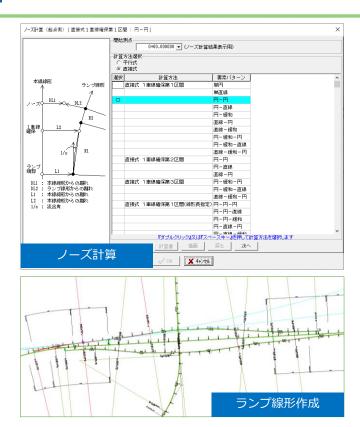
	1	CIMモデルの作成・更新	<cim導入ガイドライン></cim導入ガイドライン>					
必	2	属性情報の付与	<cim導入ガイドライン></cim導入ガイドライン>					
須	3	CIMモデルの照査	<bim cim設計照査シートの運用ガイドライン=""></bim>					
	4	CIMモデルの納品	<cim事業における成果品作成の手引き></cim事業における成果品作成の手引き>					
	1	段階モデル確認書を活用し ・ < 段階モデル確認書 > に基づき	たCIMモデルの品質確保 CIMモデルを共有し、その効果や課題について抽出する					
	2	情報共有システムを活用した関係者間における情報連携・情報共有システムの3次元データ表示機能等を活用し、関係者間の情報連携を実施する						
	3	後工程における活用を前提とする属性情報の付与 ・CIMガイドラインに固執せず、事業ごとの特性から追加すべき属性情報を検討する						
選	4	工期設定支援システム等と連携した設計工期の検討 ・「設計-施工間の情報連携のための4次元モデルの考え方」を参考に施工ステップに沿ったCIMモデルを構築する						
択	(5)	CIMモデルを活用した工事 ・CIMモデルから数量を算出する	でである。 では、 では、 学出された数量に基づく概算事業費の 算出を行う					
	6	契約図書としての機能を具備するCIMモデルの構築 ・契約図書としての要件を備えたCIMモデルを作成し、3次元モデルと2次元図面との整合性について確認する						
	7	CIMモデルを活用した効率 ・3次元モデルと属性情報に基づ						
	8		デルの効率的な活用方策の検討 施工計画を行い、出来型管理を検討、実施する					

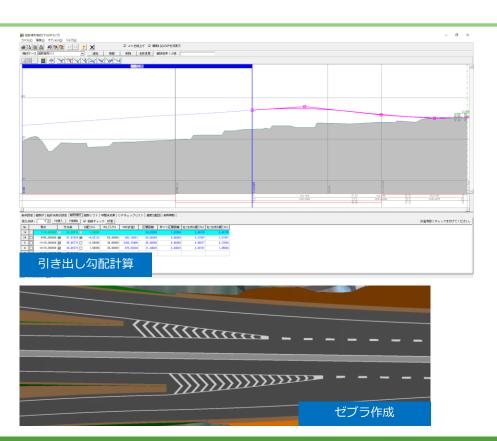
MTCの3次元モデル対応ソフト一覧

■APS-MarkIVを利用した道路設計


線形の基本

- 平面線形
- 縦断線形
- 平面線形と縦断線形の組み合わせ
- 交差点設計
- IC・JCT設計


文差点設計 (動画)


交差点設計図化システム「APS-C」

- ✓ 交差点の設計検討
 - ・ 軌跡による検討
 - ・ サグ点の確認 など
- ✓ 全体イメージの共有

IC・JCT設計

BIM/CIM活用促進セミナー2019 6

■JCTの走行シミュレーション(動画)

道路・鉄道線形計画システム「APS-MarkIV」

- ランプ検討システム 「OP-RAMP」
- 走行シミュレーション 「OP-ROAD」

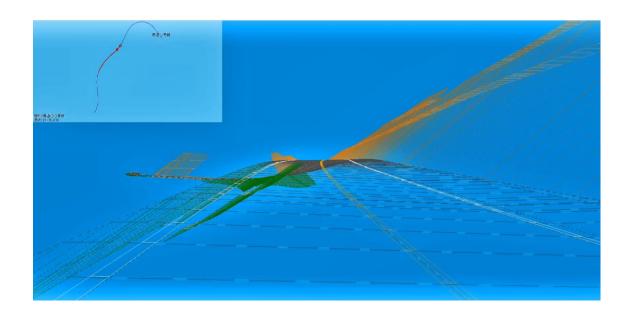
- ✓ 平面線形と縦断線形の調和 の確認(組み合わせ)
- ✓ 走行性の確認
- ✓ 視距確認
- ✓ 標識検討

■ダイヤモンドICの走行シミュレーション(動画)

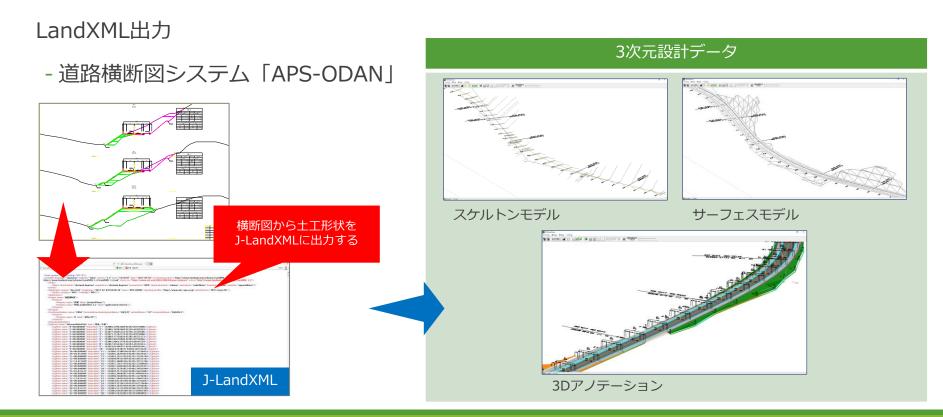
道路・鉄道線形計画システム「APS-MarkIV」

- ランプ検討システム 「OP-RAMP」
- 交差点設計図化システム 「APS-C」

- ✓ 全体イメージの共有
- ✓ 走行性の確認
- ✓ 標識検討



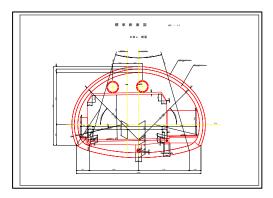
■ 平面線形と縦断線形の組み合わせ (動画)


道路・鉄道線形計画システム「APS-Mark IV」

- 走行シミュレーション 「OP-ROAD」

- ✓ 平面線形と縦断線形の調和 の確認(組み合わせ)
- ✓ 視距確認

属性情報 (土工)

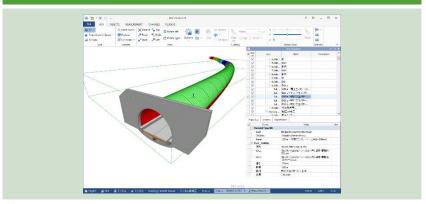


BIM/CIM活用促進セミナー2019 10

属性情報(トンネル)

IFC出力

- トンネル設計補助システム



No	開始測点	延長距離	掘削方式	WF位置	加背割	パターン名
1	5+00.700	90.000	機械掘削	0.000	上下半	DⅢ-a
2	9+10.700	100.000	機械掘削	0.000	上下半	DI
3	14+10.700	50.000	機械掘削	0.000	全断面	В
4	17+00.700	32.000	機械掘削	0.000	全断面	B-R
5	18+12.700	100.000	機械掘削	0.000	全断面	В
6	23+12.700	50.000	機械掘削	0.000	上下半	DI
7	26+02.700	176.600	機械掘削	0.000	上下半	DⅢ-a

土木モデルビュー定義に準拠して、IFCファイルへの出力が可能です。

IFCプロパティセットを用いて、トンネル内空断面寸法、 支保パターン等の属性情報の付与が可能です。

IFCプロパティセットを用いて属性情報を直接付与

BIM Vision

BIM/CIM活用促進セミナー2019 11

次は応用地質様です。